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Abstract
Blade element momentum methods are widely used for initial aerodynamic analysis of propellers and wind turbines. A wide
variety of correction methods exist, but common to all variations, a pair of residuals are converged to ensure compatibility
between the two theories. This paper shows how to rearrange the sequence of calculations reducing to a single residual. This
yields the significant advantage that convergence can be guaranteed and to machine precision. Both of these considerations
are particularly important for gradient-based optimization where a wide variety of atypical inputs may be explored, and
where tight convergence is necessary for accurate derivative computation. On a moderate-sized example optimization
problem we show over an order of magnitude increase in optimization speed, with no changes to the physics. This is done by
using the single residual form, providing numerically exact gradients using algorithmic differentiation with an adjoint, and
by leveraging sparsity in the Jacobian using graph coloring techniques. Finally, we demonstrate a revised formulation for
cases when no inflow exists in one of the directions (e.g., a hovering rotor or a parked rotor). These new residuals allow for
robust convergence in optimization applications, avoiding the occasional numerical difficulties that exist with the standard
formulation.

Keywords BEM · Blade · Gradients · Jacobian

1 Introduction

Blade element momentum (BEM) theory is a common
methodology for initial aerodynamic analysis and design
of rotors, especially for propellers and wind turbines.
The basic theory is well known and described in many
textbooks (Glauert 1935; Manwell et al. 2009; Hansen
2008; Burton et al. 2011). The method is of lower fidelity
than mesh-based computational fluid dynamics, similar in
fidelity to vortex lattice methods used for fixed wings (Jasa
et al. 2018), and is widely used for initial design and
for pedagogical purposes. Numerous extensions have been
added to the basic theory making it remarkably useful for
industrial applications including hub/tip losses (Prandtl and
Betz 1927; Wilson and Lissaman 1974; de Vries 1979; Shen
et al. 2005; Branlard and Gaunaa 2014), turbulent wake
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region models (Glauert and Committee 1926; Wilson 1994;
Buhl 2005; Burton et al. 2011; Ponta et al. 2016; Rajan and
Ponta 2019), wake expansion and swirl corrections (Madsen
et al. 2010; Døssing et al. 2011; Hjort 2019), skewed inflow
corrections (Glauert and Committee 1926; Coleman et al.
1945; Drees 1949; Mangler and Squire 1950; Pitt and Peters
1981; Peters et al. 1989; Øye 1992; Snel et al. 1995; Burton
et al. 2011), and on the airfoil side, rotational corrections
(Snel et al. 1994; Corrigan and Schillings 1994; Du and
Selig 1998; Eggers et al. 2003; Lindenburg 2004; Bak
et al. 2006), high angle of attack extrapolations (Viterna and
Janetzke 1982; Montgomerie 2004), dynamic stall models
to extend the method to unsteady loading situations (Tran
and Petot 1981; Leishman and Beddoes 1989; Leishman
1988; Øye 1990; Hansen et al. 2004; Larsen et al. 2007),
etc. The importance and relative impact of these corrections
has been demonstrated in propeller (McCrink and Gregory
2017) and wind turbine applications (Schmitz 2019).

Beyond analysis, there has been increased interest in
using BEM for optimization application. Some of the
difficulty lies in reliably solving the BEM equations.
A variety of papers have demonstrated some of the
convergence issues with the BEM equations and some ways
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to detect or improve the convergence, for example through
relaxation methods (McWilliam and Crawford 2011;
Maniaci 2011; Sun et al. 2017). Additionally, the efficiency
of propeller/turbine optimization with the BEM equations
has improved, often with multiple disciplines such as
structures, dynamics, fatigue, and acoustics. Many studies
have used gradient-free methods like genetic algorithms
(Polat and Tuncer 2013; Hwang et al. 2013; Rodrigues and
Marta 2014), genetic algorithms combined with topology
optimization (Albanesi et al. 2020), and particle swarm
methods (Chen et al. 2013), as well as sequential (He and
Peters 1992), hybrid (Gur and Rosen 2009; Bohorquez
et al. 2010), and multilevel methods (Kwon et al. 2015).
The difficulties of providing accurate gradients has been
discussed (Kwon et al. 2015), with many gradient-based
approaches using finite differencing (Døssing et al. 2011;
Kwon et al. 2015; Moore and Ning 2019). To allow for
accurate gradients the complex step approach has been used
(Kenway and Martins 2008). More recently, OpenMDAO
(Gray et al. 2019) has enabled approaches to more easily
provide system-level gradients by breaking a program into
smaller components for which analytic gradients can be
supplied. The methodology from an early version of this
paper was implemented in OpenMDAO for this purpose
(Hwang and Ning 2018),1 and that implementation has
enabled several propeller optimization studies at NASA
(Ingraham et al. 2019; Hendricks et al. 2019).

Two main challenges with performing optimization using
the BEM equations are addressed in this paper. First, as
highlighted above, solving the residual equations is not
always reliable. Fixed point iteration, Newton’s method,
and its variants are susceptible to various well-known
convergence difficulties, or if multiple solutions exist, the
solver may jump between solutions as the design is varied.
While such scenarios are rare in analysis, they are more
common during an optimization as the exploratory nature of
the algorithms creates intermediate designs with sometimes
extreme or ill-suited combinations of design parameters. For
gradient-free optimization, occasional convergence failures
or jumps in the solution space are not problematic, but
for gradient-based methods these issues can cause the
optimizer to terminate prematurely or produce gradients that
are wildly inaccurate. As optimization problems increase
in dimensionality, gradient-based methods become more
desirable, prompting a greater need to allow for robust
convergence and exact derivatives.

For a basic BEM implementation, the author developed
a reformulated approach that reduces the solution process

1The resulting OpenBEMT code has since been folded back into the
CCBlade repository to consolidate efforts.

to a single residual and is provably convergent (Ning 2014).
This prior derivation only accommodated certain correction
methods. The present papers builds on this idea in a more
general manner. The methodology no longer depends on
preselected brackets, which allows for the use of any BEM
formulation or extension (e.g., tip-loss, turbulent wake),
as long as the computation of the induction factors can
be decoupled, as is typical. Furthermore, we consider all
possible inflow angles, large axial inductions, turbines or
propellers, and cases with zero inflow from one of the
directions (e.g., a hovering rotor, or a parked rotor). For the
latter case a new formulation is derived that permits robust
convergence and derivatives even for cases with exactly zero
inflow, and the new residuals are shown to fill a singularity
in the standard equations, unifying the solution space.

The second challenge addressed in this paper is provid-
ing accurate gradients, which can be difficult or is some-
times thought to be unnecessary for these lower-fidelity
approaches. The tight convergence of the methodology dis-
cussed in this paper makes it easier to provide accurate
gradients. We use a dual-number based algorithmic dif-
ferentiation approach, which is straightforward to apply.
We also show the impact of combining AD with ana-
lytic sensitivity methods around the solver, and demon-
strate how leveraging sparsity in the Jacobian can greatly
speed up the computational of derivatives in common BEM
optimization scenarios. The significance of these consid-
erations is demonstrated with an example optimization
application.

The next two sections describe the theory. The funda-
mental BEM theory is well understood and available from
many sources. We do generalize some aspects of the theory
to allow wider exploration and discuss some details helpful
for optimization. However, if the reader already has basic
familiarity with the methodology and is mainly interested
in the results, these two sections can safely be skipped. The
details are relevant to those interested in implementation and
for educational purposes.

Following the theory sections we discuss different
ways to converge the residuals and highlight an efficient
solution process that is guaranteed to converge. Next, we
discuss derivative computation and explore how leveraging
sparsity is often beneficial when computing derivatives for
optimization problems involving BEM theory. These pieces
are put together in an optimization example demonstrating
the benefits afforded by the considerations discussed in
this paper. Finally, the sometimes numerically problematic
cases where one of the inflow velocities is zero (e.g.,
hover or a parked rotor) are explored with comparisons
to experimental data and a demonstration of the improved
robustness.



Using blade element momentummethods...

2 Theory: standard operation

Blade element momentum theory is derived in many
sources. We do not repeat all of those details, but rather
focus on generalizing inputs, and noting some details that
are important so that the output is smooth and amenable to
gradient-based optimization. Through most of the document
we will use the conventions for propellers, but the same
equations are equally applicable to wind turbines as will be
highlighted throughout.

2.1 Linear momentum balance

The methodology applies a mass and momentum balance
to a streamtube passing through the rotor disk. Rather
than using one streamtube for the entire rotor disk, it uses
multiple infinitesimally thin annulus streamtubes, passing
through a specific radial location of the rotor (Fig. 1a). We
denote the axial direction as x, positive in the designed
direction of flight (or upwind facing direction of a wind
turbine). The inflow velocity from the perspective of the
propeller is in the opposite direction, which we call Vx

rather than V∞ as the inflow velocity will in general vary

a

b

Fig. 1 Streamtube for mass and momentum balances. a The blue
annulus streamtube is used as our control volume in the mass
and momentum balances. The coordinate system is also shown. b
Depiction of the induced velocity at the rotor disk and in the farfield

between radial stations because of wind, blade motion, etc.
A positive thrust is in the +x direction, and a positive
torque is about the +x axis. The positive y direction is
a tangential direction in the designed rotation direction.
The inflow opposes this direction and is called Vy . For a
simple inflow condition Vy = Ωr , but again we allow for
general inflow including reversals. By the right hand rule
the positive z direction is nominally from hub to tip of the
blade. For blades with coning and sweep we would need to
distinguish between the rotor and local coordinate systems,
using for example the conventions in Ning et al. (2015).

Use of a mass and momentum balance, combined with
either an inviscid energy balance or Bernoulli’s equations
applied separately before and after the rotor disk, yields the
result that the velocity at the disk is halfway between the
upstream and downstream velocity. The same relationship
can be derived for a lifting wing showing that the downwash
at the wing is half of the downwash in the farfield.

With this relationship we relate the velocities upstream,
at the disk, and downstream in terms of an unknown induced
velocity u (Fig. 1b). The induced velocity is in the opposite
direction of the force. So for a propeller the induced velocity
is downstream, whereas for a turbine the induced velocity
subtracts from the axial velocity.

By convention, one typically nondimensionalizes u as
follows, where Vd is the velocity at the rotor disk:

Vd = Vx + u

= Vx

(
1 + u

Vx

)

= Vx (1 + a)

(1)

The quantity a is called the axial induction factor.
The mass and momentum balance yields the following

expression for the thrust coefficient on the rotor, which is
positive in the +x direction.

CT = 4a(1 + a) (2)

The coefficient was normalized by the dynamic pressure
of the axial inflow (qx = 1

2ρV 2
x ) and the annular

cross sectional area at the disk (Ad = 2πrdr). This is
not a standard nondimensionalization in the propeller or
rotorcraft communities, but is the convention used in the
wind energy community and is used in this case just for
convenience as it produces a simpler output. It does not
matter what normalization is used for this force coefficient
as it will cancel out when equating to blade element theory.
For a turbine, the axial induction factor will be negative, and
thus will produce drag. While it actually is a drag force, it is
still commonly called thrust in the wind energy community
by convention.

Hub and tip losses The basic momentum theory ignores the
hub and tip vortices that affect the induced velocity. Various
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correct methods exist, and any can be used. In this paper we
use the simple analytical expression developed by Prandtl
(Glauert 1935):

ftip = B

2

(
Rtip − r

r| sinφ|
)

Ftip = 2

π
arccos(exp(−ftip))

fhub = B

2

(
r − Rhub

Rhub| sinφ|
)

Fhub = 2

π
arccos(exp(−fhub))

F = FtipFhub

(3)

The angle φ is the inflow angle shown later in Fig. 5. We
have added the absolute values around sinφ because our
generalizations permit both positive and negative inflow
angles and the loss functions must always be positive
(between 0 and 1). This hub/tip-loss factor is applied
directly to the thrust and torque.

CT = 4a(1 + a)F (4)

Large induction factors The velocity in the wake from the
momentum balance is Vw = Vx(1 + 2a). For a turbine,
a could drop below −0.5, and from that equation the
wake velocities would be predicted to reverse direction
(this consideration is not important for propeller analysis).
This reversal is non-physical, as the real flow entrains
momentum in the wake through turbulence. Empirical data
is needed to determine the behavior as a approaches −0.5
and beyond. Notional behavior of the thrust coefficient with
large (negative) induction factors is seen in Fig. 2.

Various extension methods exist for the turbulent wake
region. A common simple method is the quadratic fit
from Glauert and Committee (1926). However, the Glauert
correction does not maintain continuity when the tip/hub
loss corrections are included. Instead, we use a small

Fig. 2 Thrust coefficient as a function of axial induction factor

modification of Glauert’s method developed by Buhl (but
written in propeller coordinates) (Buhl 2005):

CT =
(
4F − 50

9

)
a2 +

(
4F − 40

9

)
a − 8

9

for − 1 ≤ a ≤ −0.4

(5)

Additional considerations may be needed for induction
factors less than −1, the propeller brake region. The current
expression (4) predicts thrust for induction factors less than
−1. However, repeating the momentum balance shows that
the force changes signs, in other words it still acts as a drag
device.

CT = −4a(1 + a)F (6)

For this case the rotor behaves like a propeller (requiring
power input) but with a large negative pitch so that the thrust
is reversed allowing the rotor to act like an aerodynamic
brake.

Other wind directions The above derivation is independent
of the tangential, or in-plane velocities. If the axial wind
direction is reversed (Vx < 0), then the typical direction and
thus sign for thrust and u change as well. A flow reversal
may happen locally over parts of a propeller, and for a wind
turbine can occur across the entire rotor. In this case the
equations would predict positive thrust to the right, but that
is a negative thrust in our coordinate system. Thus, we need
to multiply the thrust equation by sign(Vx).

Summary

CT = sign(Vx)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4a(1 + a)F a ≥ −0.4
(4F − 50/9) a2

+ (4F − 40/9) a

− 8/9

−1 < a < −0.4

−4a(1 + a)F a ≤ −1

(7)

The latter two cases are generally not needed for propellers,
and the thrust is positive in the +x direction.

2.2 Angular momentum balance

Similar to the linear momentum case where an induced
velocity is produced in opposition to the force on the rotor,
a swirl velocity is induced in the opposite direction of the
torque on the rotor. The rotational velocity change occurs
much more rapidly. Conservation of momentum yields the
same result as the linear case, where the induced swirl
velocity at the disk is halfway between its upstream and
downstream values. The induced rotational velocity is 0
upwind of the rotor, v in the plane of the rotor, and 2v
downstream of the rotor. The tangential induction factor is
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defined as a′ = v/Vy , where v is the induced velocity in the
y direction and Vy is the inflow in the y direction.

An angular momentum balance across a given control
volume can be expressed as:

∫
S

(r × V) ṁ =
∑

r × F (8)

We use a disk-shaped control volume that surrounds the
rotor disk, and assume no axial component of velocity exists
on the sides of the control volume. We are then interested
in only the inflow and outflow velocity vectors into the
control volume. Figure 3 uses an ground-centered inertial
control volume, rather than a blade-centric control volume
to show the velocity triangles. This type of reference frame
and orientation is more commonly used in turbomachinery
analysis, and is convenient for this particular analysis. In
this figure, vw is the y-component of external wind. The
axial component is somewhat larger than Vxa as this end
of the control volume is past the disk, however its exact
magnitude is irrelevant as it does not contribute a net
moment regardless of its value.

Applying conservation of angular momentum yields
(where we define positive torque on the rotor as positive in
the +x direction):

(rvw)(−ṁ) + r(vw − Vy2a
′)ṁ = −Q

rVy2a
′ṁ = Q

(9)

Notice, that the external wind component cancels out,
assuming a relatively small disk, but apparent wind from
blade motion would still be included in Vy . Using the results
from the previous section:

ṁ = ρVdAd = ρVx(1 + a)Ad (10)

Thus,

Q = 2rVya
′ρVx(1 + a)Ad (11)

Fig. 3 Velocity vectors for angular momentum balance

As we did for thrust, we normalize to form the torque
coefficient.

CQ = Q

1
2ρV 2

x Adr
(12)

= 4a′(1 + a)
Vy

Vx

(13)

The expression is equally applicable to turbines. For a
propeller both a′ and a are negative. This reverses the
direction of the torque (power is extracted rather than
required as an input).

Hub/tip losses The torque correction is the same approach
as is used for thrust, where the hub/tip loss factor F is
multiplied against the torque.

Other wind directions If the direction of Vx reverses, then
nothing in the above derivation changes. We note that only
component of velocity that matters is the induced velocity:
Vy2a′. If Vx reverses, then the induced velocity Vy2a′
switches to the other side of the airfoil, but still points in the
same direction. Because the direction of the velocity is the
same, the r × V term retains the same sign, and the mass
flow is still on the “out” side of the control volume and also
retains the same sign. However, because Vx appears in our
formula, and has switched signs itself (along with u), we
need to flip the sign so that the overall sign for Q remains
unchanged. This can be accomplished by taking the absolute
value of Vx .

Changes in Vy do not matter per se, as long as the sign for
a′ does not change. A change in sign for a′ is taken care of
automatically as it appears in the equation, so no additional
change is needed.

Summary

CQ = 4a′(1 + a)
Vy

|Vx |F (14)

The positive direction of torque for this derivation is in the
+x direction.

2.3 Blade element theory

Consider the airfoil section shown in Fig. 4 with the
positive directions for twist (θ ) defined as is conventional.
We consider a general inflow of Vx and Vy . For an ideal
condition Vx = V∞, and Vy = Ωr , but because of
wind, geometry, and blade motion we allow for any general
velocity vectors.

We assume that the airfoil is generating positive lift, but
the solution will dictate the correct sign. For positive lift,
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Fig. 4 Definition for positive twist and coordinate system for the blade
element theory

the direction of circulation Γ is into the page, and from the
Kutta-Joukowski theorem:

F′ = ρV × � (15)

We can compute the resulting forces from the Vx and Vy

components of velocity. The resulting induced velocities
oppose these forces. For example, Vx creates a force to
the right, and thus an induced velocity to the left opposing
that of Vy . Conversely, Vy creates a force upward, and
thus an induced velocity downward adding to Vx . As
discussed previously, we normalize these induced velocities
as follows: a = u/Vx and a′ = v/Vy , where u and v are the
x- and y-components of induced velocity respectively. The
resulting total inflow velocity vector W , positive direction
for the inflow angle φ, and angle of attack α are shown in
Fig. 5.

From the definition of the angles we can relate the angle
of attack, twist, and inflow angle:

α = θ − φ (16)

From the angle of attack we compute the sectional lift
and drag coefficient. The lift and drag coefficients may
be functions of the Reynolds number and Mach number.
Because we do not know a and a′ we usually approximate

Fig. 5 Additional nomenclature used in blade element theory

the Reynolds number using the local velocity without
induction included:

W0 =
√

V 2
x + V 2

y

Re = ρW0c

μ

(17)

The impact of this approximation is almost always
negligible. Inclusion of a and a′ usually has only a small
effect on the Reynolds number, and typically only order
of magnitude changes in Reynolds number is important.
Additionally, airfoil data is rarely precise enough that a
minor change in Reynolds number would be significant.
Mach number does not operate on such a large scale,
but is typically only considered with an approximate
correction using the Prandtl-Glauert rule. Still, if exactness
in Reynolds or Mach number is needed, this can be achieved
with one or two extra iterations (Ning 2014). We can now
compute the lift and drag coefficients using any appropriate
method (e.g., table look-up, a panel method, 2D RANS,
etc.). We denote these functions as fL and fD .

cl = fL(α, Re, M)

cd = fD(α, Re, M)
(18)

Note that the Mach number corrections are typically
computed at each iteration rather than precomputed in the
spline.

For 2D data, whether from simulation or wind tunnel
measurements, it is essential to apply rotational corrections
and extrapolate the data to high angles of attack. As
referenced in the introduction, various methods exist for
these corrections/extensions. In this paper we use the basic
rotational corrections from Du and Selig for lift (Du and
Selig 1998) and from Eggers for drag (Eggers et al. 2003).
Extrapolation to high angles of attack uses Viterna’s method
(Viterna and Janetzke 1982). Dynamic implementations
should account for unsteady aerodynamic airfoil behavior,
and so the lift and drag coefficients may require additional
inputs. It is important that these functions are continuously
differentiable for use in gradient-based optimization. In our
case we fit the underlying data with Akima splines (Akima
1970) to ensure smooth output. Neglecting smoothness in
the airfoil data is a common source of convergence difficulty
when using gradient-based optimization.

Using the Kutta-Joukowski theorem again, the directions
for the lift and drag coefficients, cl and cd are as shown in
Fig. 6. We need to resolve these forces into the normal and
tangential directions, which by convention, corresponds to
our positive x and negative y axes respectively.

cn = cl cosφ − cd sinφ

ct = cl sinφ + cd cosφ
(19)
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Fig. 6 Directions for the lift and drag forces for positive circulation

The total thrust and torque for this blade section,
multiplied by the number of blades B is:

T = BN ′dr

T = Bcn

1

2
ρW 2cdr

(20)

Q = BrT ′dr

Q = Brct

1

2
ρW 2cdr

(21)

where W must be the full velocity:

W =
√
[Vx(1 + a)]2 + [

Vy(1 − a′)
]2 (22)

For normalization of thrust and torque coefficients we
use the same dynamic pressure and reference area as used in
the momentum balances. Furthermore, we define the local
solidity as:

σ ′ = Bc

2πr
(23)

Performing the normalization results in:

CT = T

qxAd

CQ = Q

qxAdr

= cnσ
′
(

W

Vx

)2

= ctσ
′
(

W

Vx

)2 (24)

Ultimately, we want to relate this expression in terms of
the induced velocities. Using Fig. 5, we see that

W = Vx(1 + a)

sinφ
(25)

or

W = Vy(1 − a′)
cosφ

(26)

It will be convenient later to use the first substitution
in the thrust definition, and one of each in the torque
definition:

CT = cnσ
′
(
1 + a

sinφ

)2

(27)

CQ = ctσ
′
(
1 − a′

cosφ

) (
1 + a

sinφ

)(
Vy

Vx

)
(28)

Other wind directions Nothing in this derivation changes
for other inflow directions, as long as we keep the
definitions consistent (i.e., positive direction for φ, α, etc.).

Turbines Everything in the above derivation will continue
to work in turbine operation. As the twist decreases, and/or
as the inflow velocity vector tilts away from the plane of
rotation, eventually the angle of attack becomes negative as
shown in the figure. The rotor switches from propeller to
turbine operation once the angle of attack becomes negative
enough that the lift coefficient changes direction, or in
other words that the direction of circulation flips sign. This
scenario is depicted in Fig. 7a, where we have changed both
the twist and the inflow angle.

Everything in the above derivation continues to work
correctly, the lift changes signs, as do the inductions (at
the solution at least). While this section would operate as
a turbine, if the airfoil is cambered it will be an inefficient
turbine as the airfoil is not designed for these negative
angles of attack. Instead, we would want to design it with
the airfoil flipped over (i.e., reverse the camber) as shown in
Fig. 7b. Then the “negative angle of attack” is positive from
the perspective of the airfoil. In the wind energy community
we would visualize this with the entire figure flipped over
the plane of rotation so that the airfoil looked right-side
up.

Allowing for this camber switch is the only input needed
to change a propeller BEM to a turbine BEM (or vice-versa).

a

b
Fig. 7 Turbine operation requires no changes in the methodology,
but a good turbine design would flip the camber direction. a As we
decrease twist the section switches from propeller operation to turbine
operation. b For a turbine we would flip the camber so that the airfoil
would perform as designed, with a positive angle of attack
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This change is contained to the airfoil function only, which
is generally a preprocessing step:

fL = −cl(−α, Re, M)

fD = cd(−α, Re, M)
(29)

Again, for a symmetric airfoil this change would be
irrelevant.

For turbines another change might be included just for
convenience, and that is flipping the sign on most all of
the outputs. The angle of attack, induced velocities, and
forces, are all consistent with the defined coordinate system,
but would be considered to have the opposite sign in
conventional turbine notation. Using typical wind turbine
notation the following outputs would change sign:

a, a′, u, v, cn, ct , N
′, T ′, α, cl (30)

whereas the following would not change (φ is defined the
same between the two, and the remaining quantities are
always positive):

φ, cd, W, F (31)

2.4 Blade elementmomentum

We can now combine the results from momentum theory
and blade element theory. We first equate the linear momen-
tum equations (thrust), and next the angular momentum
equations (torque). The next section will discuss the residual
equation which determines whether or not we have consis-
tency between the momentum and blade element theories.

2.4.1 Axial inflow

We equate the thrust from momentum theory and blade
element theory. The thrust from blade element theory
is always the same, but the momentum thrust changes
depending on the sign of Vx and a (7). There are multiple
cases that must be considered depending on the sign of Vx

and the magnitude of a.

– Vx > 0 and a ≥ −0.4 or Vx < 0 and a ≤ −1
These two cases yield the same result for momentum

theory (7), which we equate to that of blade element
theory (27):

4a(1 + a)F = cnσ
′
(
1 + a

sinφ

)2

4aF = cnσ
′ (1 + a)

sin2 φ

(32)

We now define a new nondimensional quantity for
convenience:

κ = cnσ
′

4F sin2 φ
(33)

Making this substitution, we can derive a simple
expression for a:

a = κ

1 − κ
(34)

The criteria for this equation was expressed in terms
of Vx and a. However, a criteria in terms of a is not
convenient, because that is the quantity we are solving
for. Instead, we will express the criteria in terms of
κ , which can be computed beforehand. Additionally,
rather than using Vx to distinguish the cases, we will
transform the criteria in terms of φ. This will allow for
consolidation of the various cases.

First, from inspection of Fig. 5 we see that if Vx > 0
and a ≥ −0.4 we must have φ > 0. Or, if Vx < 0 and
a ≤ −1 we will also have φ > 0. For the first case, this
equation only applies if a ≥ −0.4 or in other words:

κ

1 − κ
≥ −0.4

κ ≥ −0.4(1 − κ), (assuming 1 − κ > 0

or in other words κ < 1)

0.6κ ≥ −0.4

κ ≥ −2

3

(35)

Thus, this first case applies if −2/3 ≤ κ < 1.
The second case applies if a ≤ −1:

a ≤ −1
κ

1 − κ
≤ −1

κ ≥ −1 + κ, (assuming 1 − κ < 0,

or in other words κ > 1)

0 ≥ −1, always true, assuming above condition

(36)

Thus, the second case requires κ > 1.
Combining the two cases we see that the derived

expression for a is valid for κ ≥ −2/3 except for the
point κ = 1. We will see later what the κ = 1 case
corresponds to.

– Vx < 0 and a ≥ −0.4 or Vx > 0 and a ≤ −1
This scenario is identical to the previous, except for

a negative sign in front of the momentum term. In short,
we use the same equation and ranges from the previous
case if we replace κ with −κ . From Fig. 5 we can see
that these cases correspond to φ < 0.

– Vx > 0 and −1 < a < −0.4

(
4F − 50

9

)
a2 +

(
4F − 40

9

)
a − 8

9
= cnσ

′
(
1 + a

sinφ

)2

(37)
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This yields a quadratic formula that can be solved for
a. After simplification it yields (noting that only the
positive sign in the quadratic formula is physically
possible):

a = γ1 + √
γ2

γ3
(38)

where

γ1 = F(2κ − 1) + 10

9

γ2 = F

(
F − 2κ − 4

3

)

γ3 = 2F(1 − κ) − 25

9

(39)

If the denominator in (38) is exactly zero (i.e., γ3 = 0),
then the numerator is also exactly zero. However, the
expression can still be evaluated using L’Hôpital’s rule
and can be shown to be equal to

a
γ3→0−−−→ 1

2
√

γ2
− 1 (40)

From Fig. 5 we see that φ > 0 for our conditions on
Vx and a. This expression will always yield a > −1
so the limit we are concerned with is a < −0.4. We
can show that this occurs for κ < −2/3, which should
make sense as this region was designed to connect at
the border of the momentum region.

– Vx < 0 and −1 < a < −0.4
The final case is identical to the previous, except for

the negative sign in the thrust from momentum theory.
Again, we can reuse the previous result, but replace κ

with −κ and the limit on φ changes to φ < 0.

These cases can be consolidated with the logic shown in
Algorithm 1. Recall the existence of a invalid range at κ = 1
for φ > 0 and at κ = −1 for φ < 0. We will see in Section 3
that the |κ| = 1 case is only physically consistent if Vx = 0.
For nonzero inflow, we know that κ cannot equal 1 so if any
intermediate iterations produces κ = 1 we can simply return
a nonzero residual and continue iterating.

2.4.2 Tangential inflow

We now equate the torque from blade element theory (28)
with the torque from momentum theory (14). There are two
cases. First, Vx > 0:

ctσ
′
(
1 − a′

cosφ

)(
1 + a

sinφ

)
Vy

Vx

= 4Fa′(1 + a)
Vy

Vx

ctσ
′
(

1 − a′

cosφ sinφ

)
= 4Fa′

(41)

Similar to the axial induction derivation, we define a new
nondimensional quantity for convenience:

κ ′ = ctσ
′

4F sinφ cosφ
(42)

With that substitution we can solve for a′ as

a′ = κ ′

1 + κ ′ (43)

Note that this is defined everywhere except when κ ′ = −1
(we will see in Section 3 that this case is only physically
consistent if Vy = 0).

For Vx < 0 we can use the same solution by negating
the value for κ ′. These two cases can be combined into the
algorithm shown in Algorithm 2.

2.5 Loads

The solution of the residual equations is discussed in the
following section, but once the residuals are solved, the
distributed loads (force per unit length) can be computed. It
is important to use the full induction for this calculation.

W =
√

Vx(1 + a)2 + Vy(1 − a′)2

q = 1

2
ρW 2

N ′ = cnqc

T ′ = ctqc

(44)

If we define the local precone angle as Φ then the thrust
can be found through integration as:

Ti = B

∫ R

0
N ′ cosΦdr (45)
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the torque is given by

Qi = B

∫ R

0
T ′r cosΦdr (46)

These integrals actually give the instantaneous thrust
and torque, at a particular azimuthal angle, and for one
blade. If significant azimuthal variation exists, we should
azimuthally average:

T = 1

2π

∫ 2π

0
Tidθ

Q = 1

2π

∫ 2π

0
Qidθ

(47)

Usually, this averaging is only relevant for wind turbines
because of their large size, and even in that case integration
is typically fairly coarse (e.g., 4 or 8 azimuthal positions).
Power is then given by

P = QΩ (48)

3 Theory: no inflow velocity in one direction

Sometimes it is desired to explore cases where one of the
inflow velocities is zero (i.e., either Vx = 0 or Vy = 0).
Example applications include a hovering propeller for the
former, and extreme loads on a parked wind turbine for
the latter. Induction factors a = u/Vx or a′ = v/Vy are
no longer defined, and one cannot just introduce zero into
the BEM equations, at least not without some algebraic
manipulations.

3.1 Linear momentum

Consider the case when Vx = 0. With no axial inflow there
will be no tangential induction, but there will be an axially
induced velocity. As noted, we cannot use the induction
factor and so use the induced velocity u. Because the thrust
and induced velocity must be in opposite directions, by
Newton’s third law, two scenarios are possible as shown in
Fig. 8.

Using the standard BEM derivation, but in dimensional
terms, the thrust is given by:

T = −4πrρu2Fdr (49)

Fig. 8 Two possibilities for the direction of thrust and induced velocity
for a rotating blade with no inflow (e.g., hover)

This is the standard momentum contribution used in BEM
implementations for helicopters. For more generality, we
should consider the sign of the velocity. We define the
positive convention for u, as consistent with our positive
convention for a. In other words, a positive u is in the −x

direction (opposite the positive direction for thrust). Thus,
our equation for thrust becomes:

T = sign(u)4πrρu2Fdr (50)

If Vy = 0, then there is no axially induced velocity (a =
0), and Vx passes through unchanged. Momentum theory
predicts no thrust. There is still (negative) thrust, from the
drag on the blades, but this arises from blade element theory
and is treated later.

3.2 Angular momentum balance

If Vx = 0, then there is no induced velocity in the tangential
direction (v = 0). In that case, no torque is predicted from
momentum theory, but some torque will be generated from
blade element theory as will be treated later.

If Vy = 0, then there is no induced velocity in the
axial direction (u = 0). There is induced velocity in the
tangential direction, but we cannot use the normalization for
a′ = v/Vy because Vy = 0. Instead, we refer to the total
induced velocity in the plane of the rotor as v. The resulting
torque from (9) and (10) is:

−rvwṁ + r(vw − 2v)ṁ = −Q

2rvṁ = Q

Q = 2rvρVxAd

(51)

We can normalize, because Vx �= 0, but it will be convenient
to keep this expression in the unnormalized form. We do,
however, need to add the hub/tip loss factor

The sign of v is consistent with the sign of Q

automatically. However, as discussed in Section 2.2, we
must take the absolute value of Vx to account for reversals
in inflow direction.

Q = 4πr2ρv|Vx |Fdr (52)

3.3 Blade element

As mentioned, if Vx = 0 then a′ = 0. Also, a is undefined,
because of the normalization by Vx and so we must refer
to the total axial induced velocity u. There are two possible
directions for u (Fig. 9). From the figure we also see that we
can define W as:

W = u

sinφ
= Vy

cosφ
(53)

The direction of u and cn must be opposite. Thus, for the
case of u > 0 (remember a positive u is in the negative x-
direction using our convention), then cn must be positive,
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Fig. 9 Two possible directions for the induced axial velocity u. The
black u is positive according to our sign convention, and the blue u is
negative

and φ > 0. The opposite is true for the case with u < 0:
cn < 0 and φ < 0. We can determine these signs a
priori, unlike the more general case, because the velocity is
strictly determined by u, and the tangential velocity has no
induction.

If Vy = 0 then a = 0. Also, a′ is undefined, because of
the normalization by Vy and so we must refer to the total
tangential induced velocity v. There are two possibilities for
v shown in black and blue in Fig. 10. We know that ct and
v must be in opposite directions (which is the same sign in
this convention). From Fig. 10 we see that:

W = Vx

sinφ
= −v

cosφ
(54)

3.4 Blade elementmomentum

We now put the pieces together for the two different cases
separately.

Fig. 10 Two possible directions for the induced tangential velocity v.
The black v is positive according to our sign convention, and the blue
v is negative

3.4.1 Hover

If Vx = 0, equating thrust from the momentum and blade
element theories yields for u > 0:

4πrρu2Fdr = Bcn

1

2
ρW 2cdr

4u2F = σ ′cnW
2

(55)

The value for W is shown in (53) for Vx = 0. Let’s first use
the first option: W = u/ sinφ. Substituting into the above
expression and simplifying yields:

κ = 1 (56)

Conversely, if u < 0 the methodology yields.

κ = −1 (57)

We note that the first case with u > 0 implies that
φ > 0 (see velocity triangle in Fig. 9) and results in the
expression κ = 1. This case fills in our singularity noted in
Algorithm 1 and the discussion proceeding that algorithm.
In other words, the case φ > 0, κ = 1, only exists for
Vx = 0. Similarly, the derivation for u < 0 corresponds
to φ < 0 with the result that κ = −1, which fills in
the other singularity. Thus, the previous formulation (Vx �=
0, Vy �= 0) should ignore the case κ = 1 as it will not
satisfy the residual equation. Any nonzero residual could be
returned. We deal with this case explicitly in this section
with a different formulation.

While, the substitution W = u/ sinφ led to the insight
of filling in our singularity, it does not help us solve the
equation. Instead we will use one of each substitution from
(53). Note that we can also use the second substitution
twice. That formulation requires a little more logic to solve
correctly as it involves a square root for which the sign must
be protected. Either way one should get the same solution
once the residual is converged. To simplify the logic we use
one substitution from each. For u > 0:

4u2F = σ ′cn

Vy

cosφ

(
u

sinφ

)

u = σ ′cn

4F sinφ cosφ
Vy

(58)

The physics of this case is only consistent with cn > 0,
u > 0, φ > 0 and additionally Vy and cosφ must have
the same sign. All of this is handled automatically by the
residual.

Conversely if u < 0 then the sign on the momentum
portion of thrust switches and we have:

−4u2F = σ ′cn

Vy

cosφ

(
u

sinφ

)

u = − σ ′cn

4F sinφ cosφ
Vy

(59)
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This solution is consistent as long as cn < 0 and φ < 0. We
can combine these two cases based on the sign of φ:

u = sign(φ)κVy tanφ (60)

The residual equation must be algebraically simplified
using Vx = 0 and v = 0. Alternatively, we could use
the new velocity triangle in Fig. 9. Either way leads to the
equation:

sinφ

u(φ)
− cosφ

Vy

= 0 (61)

While we could leave it in this form, it is numerically
beneficial to simplify further as some terms will cancel.
After some simplification using the formula for u above we
find:

sign(φ) − κ = 0 (62)

We see that there is only a solution when φ and cn have the
same sign, as is consistent with the physics.

The relevant quadrants can be determined from the sign
of Vy , although typically only Vy > 0 is of interest for
hover. Because a′ = 0, just knowing the sign of Vy

immediately eliminates two of the four quadrants. The sign
of u is not known, but knowing the sign of the twist gives us
a good idea of what the sign of uwill be. For a positive twist,
the most likely scenario is cn > 0 thus u > 0, and vice-
versa for a negative twist. The order of quadrants is defined
in Table 1.

Once we solve this 1D equation for φ, we can compute
the torque distribution purely from blade element theory as
momentum theory does not predict any torque for the case
Vx = 0. We can use either expression for W in (53).

3.4.2 Parked rotor

If Vy = 0 we equate momentum theory with blade element
theory giving:

4πFr2vρ|Vx |dr = Brct

1

2
ρW 2cdr

4Fv|Vx | = σ ′ctW
2

(63)

Table 1 Vx = 0, θ includes pitch

Vy θ Quadrant order

+ + I, II

+ − II, I

− + III, IV

− − IV, III

If we use one of each substitution for W = Vx/ sinφ and
W = −v/ cosφ from (54) in the above expression we have:

4Fv|Vx | = −σ ′ct

Vxv

sinφ cosφ
(64)

This expression simplifies to κ ′ = −1 for Vx > 0 and
to κ ′ = 1 for Vx < 0. Like the axial inflow case, these
scenarios fill in the singularity shown in Algorithm 2. As in
the axial inflow case, we simply return a nonzero residual
if that case occurs for Vx, Vy �= 0, and we handle the case
Vy = 0 explicitly below.

Like before, the simplifications yielding κ ′ = −1 are
insightful, but do not lead to a solution process. We can
instead use either substitution for W . After simplification
both lead to the same residual function. In the following we
will use W = Vx/ sinφ. This yields the following:

v = κ ′|Vx |
tanφ

(65)

We see that v follows the sign of ct , which is consistent with
the physics.

After simplification the residual becomes:

sign(Vx) + κ ′ = 0 (66)

The quadrant search order is defined in Table 2, and the
methods of this section are summarized in Algorithm 3.

Table 2 Vy = 0, θ includes pitch

Vx |θ | Quadrant order

+ < π/2 I, III

− < π/2 II, IV

+ > π/2 III, I

− > π/2 IV, II
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4 Solution approach

While the core BEM theory is fairly standard, a wide
variety of implementations exist because of the various
corrections and extensions discussed in the introduction. In
common to all of these, a set of residual equations must
be converged, ensuring compatibility between momentum
theory and blade element theory. The induction factors at
the current iteration are in general not consistent as they
depend on the angle of attack, which in turn depends on
the induction factors themselves. Thus, an iterative, or root
finding method is necessary.

Traditionally, the residuals are solved by considering the
induction factors a and a′ as the unknown variables, and
from those inputs, we compute updated predictions for a

and a′:

ak+1, a
′
k+1 = f (ak, a

′
k) (67)

where k is the iteration index. At the end of each iteration
we can then form two residuals:

R1(a, a′) = ak+1 − ak = 0

R2(a, a′) = a′
k+1 − a′

k = 0
(68)

This form lends itself well to fixed point iteration, or to a
multidimensional root finding algorithm.

If the selected BEM models fit this form then an
alternative exists that is much more robust and just as
easy to implement. The inflow for an airfoil section, using
propeller conventions, is shown in Fig. 5. As shown in
our previous work, the residuals can be solved much more
effectively by realizing that we can define the velocity
vectors equivalently by considering the two unknowns to
be W and φ rather than a and a′ (Ning 2014). This choice
results in a big simplification because W only appears
in the Reynolds and Mach numbers, and as discussed in
Section 2 we can almost always safely neglect the induction
factors in these calculation (or if we really want to include
them this can be done easily in an extra iteration). In other
words, we can reduce our unknown variables to one: φ. This
reduction has the massive advantage that one-dimensional
root finding problems are much easier to solve, and unlike
multidimensional root finding algorithms, we can guarantee
convergence as long as we can find a suitable bracket.

The required changes to the above form are minimal. As
discussed, we conventionally consider a and a′ as inputs.
The next step is to compute the inflow angle from the
induction factors using the relationship seen in Fig. 5:

tanφ = Vx

Vy

(1 + a)

(1 − a′)
(69)

However, for the one equation method we take φ in directly
as an input and thus bypass this step. The rest of the
methodology proceeds in exactly the same way as the

traditional one. Just like the traditional method we compute
updated values for a and a′ except that they are now
functions of φ rather than prior guess for a and a′: (a(φ),
a′(φ)). The only other change needed is to define a new
residual function. This is done by using the expression, (69),
that has not yet been used in this reordered formulation.
This equation can be arranged many different ways to
form a residual function, but not all will lead to a reliably
convergent method. Singularities in the residual function
are unavoidable, but it is convenient to have the quantities
(1+ a) and (1− a′) in the denominator so that singularities
occur at the predefined locations: φ = 0, ±π (Ning
2014). These locations are particularly convenient because
they also separate regions where the physics change. We
rearrange the equation into the residual form below:

R(φ) = sinφ

1 + a(φ)
− Vx

Vy

cosφ

(1 − a′(φ))
= 0 (70)

This small change provides a significant simplification,
but the benefits are not realized if an appropriate solver is
not used. Bracketing methods are slow, and quadratic inter-
polation methods can have similar convergence problems
to the two-dimensional approach. Hybrid methods combine
bracketing with quadratic or cubic interpolation to provide
guaranteed convergence with typically superlinear conver-
gence. Brent’s method is perhaps the most well known of
these algorithms and is what is used in this paper. The con-
cept was proposed by Dekker (1969), which was soon after
made significantly more efficient by Brent (1971). In turn,
more recent methods have proposed small improvements
over Brent’s method like using cubic interpolation instead
of quadratic (Alefeld et al. 1995).

The remaining consideration is to determine a bracket.
In prior work, we showed that for a typical implementation
with standard inflow (Vx > 0 and Vy > 0) the brackets
can be determined a priori (Ning 2014). However, for more
general inflow conditions and/or use of other correction
functions, the brackets may need to be established
numerically. All that is needed to establish a bracket,
[φL, φU ], is to find two points between which the residual
function changes sign (i.e.,R(φL)R(φU ) < 0). Fortunately,
from the signs of Vx and Vy , we can determine where a
bracket is most likely to be found. Figure 11 divides the
φ range into four quadrants. We search quadrants in the
order shown in Table 3. It would be very rare that the
solution would not occur in the first quadrant listed, but
for completeness we list all possibilities in the order of
likelihood. Within each quadrant, we still need to establish
a bracket around a root. Generally there is not more than
one solution in a given quadrant. However, the numerical
possibility of multiple solutions exists and so we search for
the solution closest to φ = 0, as that is the most physically
likely. The method we use subdivides the quadrant into nint
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Fig. 11 Quadrants where a potential solution may exist. The use of ε

(a small number like 10−6) is to avoid the singularities at φ = 0 and
φ = π

intervals, where nint is a user-defined parameter. Starting
at the lower bound, we march forward towards the upper
bound looking for a change in sign. Finding a bracket
is straightforward, and once a bracket is determined the
convergence is guaranteed. In practice, we have found this
approach to always converge, and to machine precision,
across a wide range of possible inputs.

In this paper we also explore using the traditional
two-dimensional residuals. This form could be solved
with fixed point iteration, but convergence is not always
reliable. Newton’s method is another common choice but
it also suffers from relatively high failure rates during
an optimization. In this study we use the trust region
method in NLsolve.jl2. For the problems tested in this
paper, this method was found to be the fastest of the
methods in the NLsolve package, and was found to be
more consistently reliable than the solvers in Python’s
scipy.optimize.root. To further speed up the 2D
approach, we compute the Jacobian of the residuals using
algorithmic differentiation. We scaled the second residual
by an order of magnitude, the one associated with a′, as
that improved overall convergence (this trust region method
actually performs auto scaling, but scaling helped the other
methods that we compared against and makes the contour
plots easier to visualize).

Even still, the methodology is prone to occasional
failures. There are many reasons why the equations could
fail, a rather benign, but frequently occurring case is
discussed below. During a wind turbine optimization a
failure point was noted and saved for further inspection. The
induction factors a and a′ were varied near the failure point
to visualize the solution space. A contour plot was created
using the norm of the two residuals in Fig. 12a. The point
identified by the 2D solver is denoted by the red x. While
at first glance it may appear to be a solution, this is not a
minimization problem, but rather a root finding problem and
the local valley does not actually contain a root. Because
the function increases in every direction, the root finding
method terminates and cannot improve.

2https://github.com/JuliaNLSolvers/NLsolve.jl

Table 3 Quadrant search order based on the location where a solution
is most likely to be found

Vx Vy Quadrant order

+ + I, II, III, IV

− + II, I, IV, III

+ − III, IV, I, II

− − IV, III, II, I

In contrast, the 1D solution method can correctly identify
the root (shown by the black dot) in the same figure. Across
a wide range of optimizations the 1D solution method never
failed. We can view these two solutions on the 1D solution
space as well as shown in Fig. 12d. The reason this behavior
occurs is that this is a section near the hub of the blade

a

b

Fig. 12 Contrast between the correct solution found by the 1D
algorithm, and a non-solution where the 2D algorithm is forced to
terminate. a Solution space for the two-dimensional residual form. The
red x found by the 2D algorithm is not actually a root (just a minimum).
b Solution space for the one-dimensional residual form

https://github.com/JuliaNLSolvers/NLsolve.jl
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and it is operating near stall. It is common for large wind
turbines to have sections near the hub operating near stall.
Because of the nature of the lift coefficient near stall there
is a reversal in the lift coefficient and subsequently in the
residual. A bracketing method (such as Brent’s method used
in the 1D solution algorithm) has no problem navigating a
nonmonotonic function and correctly identifies the solution,
but the 2D approach has no such guarantees and can easily
get stuck in a point that does not satisfy the governing
equations.

In this case the error is relatively insignificant, but
much more significant errors can easily occur. In another
scenario if we take the starting reference wind turbine
(discussed in Section 6), and add just five degrees of pitch,
multiple convergence failures occur across the blade. One
such scenario is depicted in Fig. 13. The diagonal ridge in
Fig. 13a represents the separation between solutions with
positive and negative circulation from the blade element
formulation and the 2D algorithm gets stuck at very
erroneous induction factors. In contrast, the 1D method
easily identifies the correct solution where this section has a
negative induction and produces some thrust (a section that
locally behaves like a propeller even though the rotor as a
whole behaves like a turbine). In Fig. 13b the 2D solution
does not appear as it is way off the plot.

Of course better starting points can lead to better
convergence in the 2D space, but for the 2D case it is
not always easy to know what the starting values should
be beforehand. In the last case, for example, it would
have been expected to have negative induction factors as
the rotor was a wind turbine and most of the rotor was
acting as a turbine. Alternatively, stochastic approach can
be helpful in avoiding this type of premature convergence,
but these methods are much less efficient computationally,
especially in the cases discussed in this paper where we are
interested in tight tolerances to produce accurate derivatives.
In contrast, the 1D solution only requires brackets that are
easily identifiable and yield guaranteed convergence.

It should be mentioned that there are some model choices
that may not lend themselves to this form and thus cannot be
reformulated into the one-dimensional form. For example,
one skewed inflow models does not allow for decoupled
calculation of a and a′ (Ning et al. 2015). It is not
problematic if the expressions for a and a′ are implicit,
but they do need to be separable. In these less common
scenarios, we must stick with the two-dimensional version
and form residuals on the forces that are always separable
as the methods are distinct:

R1(a, a′) = CT momentum − CT blade element = 0

R2(a, a′) = CQmomentum − CQblade element = 0
(71)

a

b

Fig. 13 A more catastrophic failure when searching the 2D space. a
Solution space for the two-dimensional residual form. The red x from
the 2D algorithm is clearly not a solution. b Solution space for the
one-dimensional residual form

5 Derivative computation

Accurate derivative computational is important for utilizing
BEM theory in optimization applications. Finite differences
are common, but are inaccurate and scale inefficiently.
Gradient-free optimization approaches are straightforward
to apply but scale even more inefficiently. As blade design
is just one aspect of a wider multidisciplinary problem, and
there is increased interest in optimizing propellers across
trajectories with many variables, it is desirable to allow for
efficient scaling with increasing design variables.

The main complication to computing derivatives in BEM
theory is the need to solve a residual equation internally
(70). This residual is applied at each radial section on the
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blade independently and also in time independently. The
phrase “in time” could apply to a quasi-static simulation
(e.g., a flight maneuver), or could denote multiple operating
conditions that are not necessarily correlated in time per se
but rather through some other operating variable like wind
speed (e.g., a wind turbine power curve).

In this paper we use algorithmic differentiation (AD) to
compute derivatives. Because there is an internal solver, we
can either propagate dual numbers through solvers, or use an
analytic approach around the solver (i.e., direct or adjoint).
Using AD through a solver is simpler but less efficient.
Also, when using AD through a solver one generally must
use a tighter tolerance as the dual values converge slower
than the primal values, fortunately the 1D algorithm allows
for convergence to machine precision. We explore both
procedures in this paper. The formulation for using AD with
an analytic approach around the implicit equations requires
a bit more effort, but does provide a speed advantage for
some of the cases. We tested two different AD approaches,
a forward mode and a reverse mode AD method, using
the ForwardDiff.jl (Revels et al. 2016) and ReverseDiff.jl3

packages respectively.
One key insight into computing gradients efficiently is to

take advantage of sparsity that often exists in the Jacobians
of these problems. As an example, consider a case using all
the geometric inputs to the BEM solver and the two main
outputs: thrust and torque. The inputs used include:

x = [r1, r2, . . . , rm, c1, c2, . . . , cm, θ1, θ2, . . . , θm,

Rhub, Rtip, Φ, ρ, V∞, Ω, θp] (72)

where m represents the number of radial stations along the
blade, and the variables are radial stations, chord lengths,
twist angles, hub and tip radii, precone angle, density,
airspeed, rotation speed, and the pitch angle. For this sample
problem there were 11 radial stations and so the Jacobian
was of size 2 × 40 and was fully dense. Even though
the loads at radial station i only depend on the geometry
at station i (ri, ci , θi), the thrust and torque are integral
quantities and thus there is no sparsity to take advantage
of. One would expect reverse mode AD to be advantageous
in this situation as the number of outputs is much smaller
than the inputs, however, the cost of constructing the
computational graph took more time than just using the
forward mode. In either case, the Jacobian is small, so the
differences are not that significant.

The more interesting case occurs as we consider multiple
inflow conditions. A common evaluation scenario requires
using the BEM for the same geometry but with different
operating points. For example, flight conditions across an

3https://github.com/JuliaDiff/ReverseDiff.jl

aircraft’s trajectory, or operating points in a wind turbine’s
power curve. For these scenarios the inputs are as follows:

x = [r1, r2, . . . , rm, c1, c2, . . . , cm, θ1, θ2, . . . , θm,

Rhub, Rtip, Φ, ρ, V∞1, V∞2, . . . , V∞n,

Ω1, Ω2, . . . , Ωn, θp1, θp2, . . . , θpn
]

(73)

where n represents the number of inflow conditions. In this
case there are 2n outputs corresponding to the thrust and
torque at all n inflow conditions. For 100 inflow conditions
the Jacobian is of size 200 × 337. However, this time
there is significant sparsity. The thrust at inflow condition
j only depends only inflow conditions j (V∞j , Ωj , θpj

).
Thus, the structure of the Jacobian looks like that shown
in Fig. 14a. For simplicity only one geometric variable (c)
and one inflow variable (V ) is illustrated. The structure
is simply repeated with the additional variables. This
is an advantageous structure as graph coloring theory

a

b
Fig. 14 An illustration of the sparsity pattern for many BEM problems
and how we can leverage graph coloring. a Jacobian sparsity pattern
considering the geometric variable c and the inflow variable V. b
Compressed form of the Jacobian

https://github.com/JuliaDiff/ReverseDiff.jl
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(Gebremedhin et al. 2005) allows us to collapse the Jacobian
structure into the sparse representation shown in Fig. 14b

Thus, for our example Jacobian of size 200 × 337 we
would only need to evaluate 40 forward passes, the same
as our original problem that had only one inflow condition.
We use the package SparseDiffTools.jl4 to compute the
coloring vector and compute the Jacobian using forward
mode AD, taking advantage of the graph coloring. To
illustrate the benefit of this approach we compare the time to
construct the Jacobian using forward mode AD, versus the
time to construct the Jacobian using forward mode AD and
graph coloring, for problems with increasing numbers of
inflow conditions for m ∈ [1, 2, 4, 8, 16, 32, 64, 128, 256].
The timing is computing using BenchmarkTools.jl,5 which
runs multiple samples in order to produce consistent
performance predictions. All Jacobians and intermediate
vectors are cached so that computations are done in place
to reduce memory usage. The results of the comparison are
shown in Fig. 15a.

For a small number of inflow conditions there is
no advantage to using graph coloring, the timings are
essentially identical. After 16 inflow conditions and beyond,
for this problem, it is advantageous to use the graph coloring
approach. For large number of inflow conditions the time
savings exceeds an order of magnitude. This is a tremendous
speed advantage that requires only a very small change in
the way the Jacobian is computed.

While we emphasize AD, the same trends are realized
with finite differencing. Finite differencing can leverage the
graph coloring techniques in exactly the same way. Both
require the same number of forward operations, although
algorithmic differentiation has the additional flexibility that
it could be used in reverse mode. Figure 15b shows a
comparison using the sparse formulation for both AD and
forward finite differencing with the package FiniteDiff.jl6.
AD provides about a 4 times speed advantage (about the
same factor if both use dense methods). The real advantage
of AD is not the speed but the accuracy. In this case finite
differencing only achieves about 7 digits of accuracy out of
15, whereas the derivatives of AD are exact within machine
precision.

6 Optimization

As a demonstration of these considerations we perform
a wind turbine blade optimization comparing different
strategies. The goal of the optimization is not to design
a blade, indeed blade optimization is not particularly

4https://github.com/JuliaDiff/SparseDiffTools.jl
5https://github.com/JuliaCI/BenchmarkTools.jl
6https://github.com/JuliaDiff/FiniteDiff.jl

a

b

Fig. 15 The time required to compute the Jacobian as a function of
the number of inflow conditions. a Forward mode AD compared to
forward mode AD with graph coloring. b Finite differencing with
graph coloring as compared to AD with graph coloring

meaningful unless other multidisciplinary considerations
are also included (e.g., structures, acoustics). The goal is
to illustrate the impact of the considerations discussed in
this paper and the types of challenges encountered in blade
optimization with blade element momentum theory.

The baseline design is the NREL 5-MW reference
turbine (Jonkman et al. 2009), which has 17 radial stations.
The optimization objective is to maximize the annual energy
production by changing the blade chord distribution, twist
distribution, tip-speed ratio in Region 2 of the power curve,
and the pitch at 80 wind speeds from the cut-in wind speed
to the cut-out wind speed. The annual energy production
is computed assuming a Rayleigh distribution with a mean
wind speed of 6 m/s. To reduce the dimensionality, chord
and twist are specified only at a small number of radial
locations and Akima splines are used to generate continuous

https://github.com/JuliaDiff/SparseDiffTools.jl
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/JuliaDiff/FiniteDiff.jl
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distributions along the blades. Chord is specified at five
radial stations (0%, 25%, 50%, 75%, and 100%) and twist
is specified at four stations (11.1%, 40%, 70%, and 100%
along the blade). The twist specification starts at 11.1%
along the blade because inboard of that radius the blade uses
cylindrical sections where the twist is meaningless. Eighty
points is generally more than sufficient to resolve the power
curve, but is a small number for a trajectory optimization,
and so this is representative of a medium-sized problem (90
design variables).

The first set of constraints are that the power at each wind
speed must stay below rated power, which is essentially
a constraint on maximum torque and is primarily met by
feathering the blades (increasing pitch). The second set of
constraints is that the thrust at each wind speed must stay
below a specified level. The level (600 kN) is chosen to be
below the 5-MW reference turbine so that the constraint will
be active. The chord at the root is constrained to not decrease
below its initial value (3.542 m) in order to facilitate
connection to the hub. A maximum rotation speed of 12
RPM is specified, but this can be imposed in the analysis
without requiring additional constraints. The turbine rotates
at the tip-speed ratio specified by the optimization, until it
reaches the maximum allowed speed, after which it remains
at that max speed through the remainder of the power curve.
As a surrogate for a structural stress constraint, the flapwise
loads are constrained near rated speed where the loads are
highest. Again, the constraint is imposed at a level (6500
N/m) below that of the baseline design so that the constraint
will likely be active. Finally, a constraint is added to force
the pitch to increase throughout the power curve, which
should happen anyway. This is not a strictly necessary
constraint but helps with the numerical behavior. Sometimes
there is a low and a high pitch solution that can satisfy
the power constraint, and because each pitch variable is
independent the solution could contain large jumps in pitch
in nearby speeds. Such large changes would not be desirable
for a controller. Alternatively, pitch could be nested with
a root solver in the analysis, but was easier to impose in
the optimization for this case. The problem is specified as
follows:

maximize annual energy production

by varying chordi for i = 1 . . . 5

twisti for i = 1 . . . 4

tip-speed ratio

pitchi for i = 1 . . . 80

subject to poweri ≤ 5 MW for i = 1 . . . 80

thrusti ≤ 600 kN for i = 1 . . . 80

flapwise loadsj ≤ 6500 N/m for j = 1 . . . 17

pitchi+1 > pitchi for i = 1 . . . 79 (74)

where the 80 (and 79) corresponds to the wind speeds,
and 17 corresponds to the number of radial locations.
The problem has 90 design variables and 256 con-
straints. The objective and all constraints were normal-
ized so that their order of magnitude was approximately
unity.

Five different strategies were used to optimize the
problem. All five methods used in-place operations for
populating the Jacobian so that new arrays were not
allocated at each iteration.

1. The traditional two-residual formulation was used. All
of the physics calculations were exactly the same in
all cases, only the solver was changed as discussed in
Section 4. Total derivatives were obtained through finite
differencing.

2. The remaining methods used the one-dimensional
residual, with Brent’s method, but differ in the way
derivatives are obtained. This second case used the
same finite differencing procedure as the previous case.

3. Total derivatives were obtained using forward mode
algorithmic differentiation with the dual numbers
propagated through the solver.

4. Total derivatives were obtained using an implicit
analytic method (there is no distinction between
direct/adjoint as the residual is 1-dimensional) where
forward mode algorithmic differentiation provides the
partial derivatives of the residual.

5. Total derivatives were obtained using forward mode
algorithmic differentiation with graph coloring. The
sparsity pattern for this problem is very similar to
Fig. 14a, but with one important difference. The annual
energy production is affected by every variable and
so there is one row that is completely dense. Thus,
if all derivatives were computed together, the sparse
formulation would not be reducible in either a forward
or reverse mode. There would still be some benefit as
the sparse formulation requires less storage and less
multiplications inside the optimizer, but the benefit was
negligible for the sizes of problems tested. To address
this issue, we compute the derivatives of all constraints
using the sparse formulation, but the objective gradient
(annual energy production) is computed separately.
Generally, this could be computed efficiently using
reverse mode AD as there is only one output and many
inputs. However, in this case the AEP is just a weighted
sum of powers, for which we already have derivatives,
and so the objective derivative was most efficiently
provided analytically. More generally bi-directional
coloring schemes can be used for these problems
that have dense rows and dense columns (Coleman
and Verma 1998). Gray et al. have demonstrated
the effectiveness of this approach in computing total
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derivatives across large multidisciplinary problems
(Gray et al. 2019).

We used SNOPT (Gill et al. 2005), a well-known sequen-
tial quadratic programming algorithm, as the optimizer
with default options. The timing as reported by SNOPT
is summarized in Table 4. The solution for each case was
compared and was identical within the tolerances.

Switching from the traditional residual formulation to
the one-equation formulation reduced computation by about
40%. That is not too surprising as solving the one-
dimensional residuals typically requires about half the
number of iterations as solving the two-dimensional resid-
uals. A major difference was the number of convergence
failures. The one-residual method never failed, but the tra-
ditional two-residual method failed frequently during the
optimization process. Fortunately, the optimization process
was robust and so it still reliably converged to the optimum.
Perhaps the main benefit to switching to the one equa-
tion model is increased convergence robustness, and tighter
tolerances. The two-equation residual cannot in general
be converged to tight tolerances at every iteration, which
makes it harder to proceed to the subsequent cases using
algorithmic differentiation throughout the full analysis.

Switching from finite differencing to numerically exact
derivatives improved the convergence speed by an addi-
tional factor of three. Note that the AD used is a forward
mode so the advantage in time savings is not because of
scaling differences between the number of inputs and out-
puts (both scale with the number of inputs), but because
of efficiencies in computing derivatives with AD, and effi-
ciencies in the optimization made possible by more accurate
derivatives. Furthermore, using AD only for the partials, and
then solving for total derivatives with an implicit analytic
approach increased convergence by another factor of two.

Finally, switching to sparse derivatives allowed for an
additional 2.5 times speed up, allowing the optimization
to be solved in a surprisingly quick 5 s. Note that for the
sparse case there was no real difference between using
AD through the solver, or using AD with an adjoint. The
derivative computation was no longer a bottleneck either

Table 4 Comparison between time to solve optimization problem
between the five different approaches

Method Time (s)

Traditional with FD 112

One residual with FD 67

One residual with AD through solver 24

One residual with AD/analytic 12

One residual with sparse AD 5

way. All together, the final method was over 22 times faster
than the first method, and the only changes were in the
solver used for converting the residuals and the methods
used to compute the derivatives. Across the last four cases,
the speed up was about 13 times and the only change was in
how the Jacobian was computed.

These timings will of course vary from problem to
problem, and even for the same problem the optimization
path may vary leading to timing differences that should
be averaged across many optimizations. The purpose of
this analysis is not to dissect specific numbers, but rather
to illustrate that small changes in how the residuals are
converged and in how derivatives are obtained can have
a large impact on optimization performance. This type of
performance benefit is enabled by enabling differentiability
upfront during the derivation and implementation of the
methodology.

7 No inflow in one direction

As discussed in Section 3, no inflow in one direction occurs
in applications of interest like a hovering rotor, or a parked
rotor. While using exactly zero does not work with the blade
element momentum equations, one can use a small number
for the velocities (e.g., Vx = 10−4). However, it remains to
be seen whether that leads to numerically accurate values
as Vx → 0 (not to mention the consideration of whether
or not the assumptions of blade element momentum theory
are even applicable at these extremes). Section 3 contains
rederivation of the methodology so that zero inflow can be
handled robustly.

7.1 Validation

Before comparing these rederived equations against the
general formula with small (but nonzero) inflow velocities,
we explore a few validation cases. We compare this
formulation against experimental data for a hovering rotor
with an untwisted blade (Ramasamy et al. 2010). The study
used a Reynolds number correction based on results from
a previous study by Lim et al. (2009). We apply the same
correction for the lower Reynolds number of these tests,
namely an increase in drag coefficient of 0.014 for the
NACA 0012.

Rather than use the standard Prandtl tip correction
we use the method discussed by Johnson (2012) for
rotorcraft applications. The methodology simply assumes
that sections near the tip produce no lift, and only produce
drag. Because there is no lift for those few sections near the
tip, there is no induction, the residual equation is bypassed,
and the torque is computed directly from blade element
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theory. This tip loss is only applied at sections for which
(Sissingh 1939):

r

Rtip

≥ 1 − 2

3

c(r/Rtip=0.7)

Rtip

(75)

For the rotor studied in this section this corresponds to
r/Rtip ≥ 0.94. Using the standard tip correction produces
essentially the same results except at the high power
end of the curve where the thrust loads are somewhat
overpredicted.

Figure 16 compares the thrust coefficient and torque
coefficients normalized by solidity, and the figure of merit,

a

b

Fig. 16 Comparison of integrated loads between BEM and experi-
mental data for a rotor in hover. a Thrust coefficient versus torque
coefficient. b Thrust coefficient versus figure of merit (efficiency)

which is a measure of hover efficiency. These plots are the
same as those in the original study (Ramasamy et al. 2010).
Of note the BEM compares quite favorably to experimental
data, at least for these integral quantities, and avoids some
of the spurious jumps shown in the cited study (although
the BEM was not the focus of that paper). The study also
provides wake velocities, which are compared in Fig. 17,
also in the same style as those shown in the original study.
Here we see that agreement is reasonable except at the tip
where the simple tip loss function forces these velocities
to zero. The wake from a rotor in hover plays a significant
role in affecting the blade loading, particularly near the tip.
The BEM assumption of streamtubes are less justifiable

a

b

Fig. 17 Comparison of normalized axial induced velocities along
radius between BEM and experimental data for a rotor in hover. a Pitch
set such that CT = 0.0013. b Pitch set such that CT =0.0076
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in these recirculating regions. Better tip corrections, or tip
corrections tuned for hover scenarios could be used to offer
improved loading and wake distributions, but is not the
focus of this work.

Our main interest is understanding the differences
between the original BEM and the reformulation discussed
in this section that allow for Vx to be exactly zero. For
the original case we specified the inflow velocity as a
small nonzero value: Vx = 10−4. Figure 18 shows the
torque coefficient as a function of pitch angle, for the two
cases. This is the same data as in the previous figures, only
shown as a function of pitch rather than thrust coefficient
to more easily see the differences. We see that the original
formulation follows the same trend, but occasionally
jumps to another solution because of the poor numerical
formulation (this is true regardless which tip correction
method is used). Because Vx is very small, but nonzero,
the axial induction factor is very large. Additionally, as the
pitch goes to zero, the torque erroneously jumps to zero for
this untwisted blade. In contrast the reformulated version
maintains smooth and consistent convergence across the
range of pitch angles. For pure analysis, using the original
version with a small Vx may be sufficient, but for use in
optimization, particularly with gradient-based methods, the
smooth and reliable convergence of this reformulation may
be needed.

For optimizations in hover, or rotors with brakes
preventing rotation, the same considerations for converging
the residual and computing derivatives from the previous
sections would apply. The revised formulation derived in
this section is recommended, rather than using the standard
formulation with negligibly small inflow velocities, to avoid

Fig. 18 Comparison between the original BEM formulation with small
inflow velocity Vx = 10−4 versus the reformulated version that allows
for Vx = 0 and leads to improved numerical convergence

the convergence challenges highlighted in this section.
However, as also highlighted in this section, the assumptions
of BEM theory may be less defensible in hover than they are
for forward flight, and the accuracy of the results, especially
near the tip, may be less than satisfactory without additional
correction models specific to these applications.

8 Conclusion

Blade element methods (BEM) are widely used for
initial aerodynamic analysis of wind turbine and propeller
blades. As optimization problems become increasingly
complex, especially with large numbers of design variables,
weaknesses in the way the BEM equations are typically
solved and the way derivatives are obtained become more
limiting. In particular, the standard formulation requires
the coupled solution of a pair of residual equations,
often with fixed point iteration, Newton’s method, or
other more sophisticated multidimensional root solvers.
Such methods work very well for analysis, but are prone
to occasional convergence difficulties, particularly during
an optimization. The exploratory nature of optimization
sometimes creates input combinations with solutions far
from typical starting points in the root solver. Thus,
occasional convergence failures are produced with solutions
diverging, or solutions terminating in a local valley that does
not contain a root. The latter case can often occur for blade
sections operating near stall, because of the reversal in the
lift coefficient, as shown in this paper.

There exist a wide range of proposed correction models
to improve the accuracy of the physics models, but common
to them all a pair of residual equations must be solved
ensuring compatibility between the blade element and
the momentum formulations. As shown in this paper,
by rearranging the sequence of computations the pair of
residuals can be recast as a single residual that is only a
function of the inflow angle. This reformulation provides
a significant benefit because there are one-dimensional
root finders with guaranteed convergence, and they are
not susceptible to premature termination on nonmonotonic
functions like the stall case mentioned earlier. Furthermore,
one-dimensional root solvers can be converged reliably to
machine precision, facilitating computing of more accurate
gradients, especially when using algorithmic differentiation
(AD).

Algorithmic differentiation was applied to the BEM
formulation. Using a dual number approach for AD required
only minimal changes to the code while allowing for
exact derivatives (approximately doubling the number of
significant digits as compared to finite differrencing).
Additionally, the time to solve optimization problems is
greatly reduced, both because of faster gradient calculations
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and the improved accuracy of the derivatives allow for more
efficient optimization convergence. Furthermore, many
BEM optimization problems exhibit significant sparsity
in the Jacobians. For example, trajectory optimization
problems with propellers, or power curve evaluations
for turbines, involve computing performance at multiple
independent conditions. Using graph coloring, the Jacobians
can be computed much faster than for standard dense
formulations. For even moderate-sized problems, the
speed up in derivative computational time can exceed an
order of magnitude. An example optimization was shown
highlighting more than an order of magnitude increase in
optimization speed with no changes in the physics, only
changes in the way the residuals are converged and how the
derivatives are computed.

Finally, for cases with zero inflow in one direction, like
a hovering rotor or a parked rotor, new residuals were
derived. The standard formulation is undefined exactly at
zero. While small nonzero inputs can be used, especially
for analysis, the formulation is more prone to erroneous
jumps in the outputs that are problematic for optimization.
New residuals were derived that converge reliably, and
show a nice theoretical fit with the standard equations
filling in existing singularities. Although this formulation
allows for clear improvements in optimization usage, the
physics of hovering rotors using blade element momentum
theory may be less accurate without additional corrections.
The recirculation of tip vortices stretches the streamtube
assumptions and leads to higher errors in the tip regions of
the blades. The scope of this paper focused on optimization
aspects (solvers and derivatives), rather than the physics, but
future work in improving BEM implementations for hover
would be useful. A particular need for these conditions exist
with emerging propeller-driven eVTOL aircraft that move
through a range of conditions transitioning from hover to
forward flight.
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